Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers.
نویسندگان
چکیده
Arrays of plasmonic pentamers consisting of five metallic nano-disks were designed and fabricated to achieve a pronounced Fano Resonance with polarization-independent far-field spectral response at normal incidence due to the structure symmetry of pentamers. A mass-spring coupled oscillator model was applied to study plasmon interactions among the nano-disks. It was found that the direction of the excitation light polarization can flexibly tune the spatial localization of near-field energy at sub-wavelength scales while the collective optical properties are kept constant. It can lead to a selective storage of excited energy down to sub-20 nm gap at a normal incident with a single light source.
منابع مشابه
Observation of Fano resonances in all-dielectric nanoparticle oligomers.
It is well-known that oligomers made of metallic nanoparticles are able to support sharp Fano resonances originating from the interference of two plasmonic resonant modes with different spectral width. While such plasmonic oligomers suffer from high dissipative losses, a new route for achieving Fano resonances in nanoparticle oligomers has opened up after the recent experimental observations of...
متن کاملFrom Fano-like interference to superscattering with a single metallic nanodisk.
Superscattering was theoretically proposed to significantly enhance the scattering cross-section of a subwavelength nanostructure, far exceeding its single-resonance limit by employing resonances of multiple plasmonic modes. By numerical simulation, we design a subwavelength nanodisk as a simple candidate to achieve superscattering. Due to the phase retardation, the subradiant mode can be excit...
متن کاملFrom Fano-like Interference to Superscattering with Single Metallic Nanodisk
Superscattering was theoretically proposed to significantly enhance the scattering cross section of a subwavelength nanostructure, far exceeding its single-resonance limit by employing resonances of multiple plasmonic modes. By numerical simulation, we design a subwavelength nanodisk as a simple candidate to achieve superscattering. Due to the phase retardation, the subradiant mode can be excit...
متن کاملFano resonances in all-dielectric oligomers.
We demonstrate that light scattering by all-dielectric oligomers exhibits well-pronounced Fano resonances with strong suppression of the scattering cross section. Our analysis reveals that this type of the Fano resonance originates from the optically induced magnetic dipole modes of individual high-dielectric nanoparticles. By comparing to the plasmonic analogues, we observe that Fano resonance...
متن کاملDark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams.
Control of the polarization distribution of light allows tailoring the electromagnetic response of plasmonic particles. By rigorously extending the generalized multiparticle Mie theory, we show that focused cylindrical vector beams (CVB) can be used to efficiently excite dark plasmon modes in nanoparticle clusters. In addition to the small radiative damping and large field enhancement associate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 19 6 شماره
صفحات -
تاریخ انتشار 2011